
User's Guide

Table of contents

1 Introduction.. 2

2 Modules.. 2

3 Module Groups...2

4 A simple Single-Phase Workflow.. 3

5 An advanced Workflow..4

6 A scenario with limited disk space...6

7 Writing your own modules...7

8 Using hdrff4img... 7

Copyright © 2010 Bernhard Bablok All rights reserved.

1. Introduction

This User's Guide gives an introduction to the use of hdrff. It covers a few typical
use-cases, but it is not a complete reference.

This guide assumes that you have installed hdrff and it's prerequisite packages as
described in Installation. You should also have a working basic configuration (also
described there).

If you don't want to setup the complete workflow, but just want to process a few images,
you should nevertheless read the following sections to gain an understanding of the
concepts. But instead of running hdrff, you would use hdrff4img which is also described
in this section of this user's guide.

2. Modules

The central concept of hdrff is the "module". A module performs a dedicated task during
the workflow. A module should do one and only one thing (for all images processed
during one run). For example, the copyFiles-module copies your images from your
memory card to your hard-disk. The module copyFiles is typically the first module in
every workflow.

You tell hdrff which modules it should process by passing them on the commandline,
e.g.:

$ > hdrff copyFiles name2lc fixDate setRO raw2tif findGroups

Typically, you can guess what a module does from it's name. If you need details, you
either have to read the documentation, or you just run hdrff -H.

You don't have to run all modules at the same time. The example given is equivalent to
running

$ > hdrff copyFiles name2lc fixDate
$ > hdrff setRO raw2tif findGroups

or

$ > hdrff copyFiles
$ > hdrff name2lc fixDate setRO raw2tif
$ > hdrff findGroups

This feature lets you split up your workflow into separate phases. The section An
Advanced Workflow below will use hdrff in multiple phases.

3. Module Groups

User's Guide

Page 2
Copyright © 2010 Bernhard Bablok All rights reserved.

../install/index.html
hdrff.html
hdrff4img.html
../modules/copyFiles.html
../modules/copyFiles.html
../modules/

Passing all the modules on the commandline like in the example above is error-prone and
complicated. To facilitate processing and to make life simple, hdrff also supports
"module-groups". A module-group is a list of modules. Module-groups can be nested, i.e.
a module-group can contain other module-groups.

Hdrff comes with a number of predefined module-groups. The example above is
equivalent to

$ > hdrff baseModules

You will see a complete list of the defined module-groups with the command hdrff
-H.

Technically, module-groups are just environment variables. So you can define your own
groups like this:

$ > export myModules="baseModules delInterFiles mv2archive"
$ > hdrff myModules

You don't have to define your groups on the commandline, you can also put the definition
into your hdrff-configuration-file. Note that it is only a convention that the name of a
module-group contains the string "Modules". You can use any name, but be aware that
hdrff -H only shows module-groups which follow the naming convention.

There is one special module-group: MODULES. This group contains all the modules hdrff
should run if you don't pass a module or module-group on the commandline. If you don't
like this behaviour, you could set MODULES=noop. Hdrff will then only run the no-op
module noop.

4. A simple Single-Phase Workflow

The following example is a simple single phase workflow. Let's assume we are
processing images in Nikon's raw-format (nef-files). We use the following
$HOME/.hdrff/hdrff.conf:

: ${MEDIA:=/mnt/media}
: ${TARGET_DIR:=/data/images}
: ${IMG_EXT:=nef}
: ${IMG_PREFIX:=dsc_}
: ${IMG_DEPTH:=16}
: ${IMG_FIXCA:=1}
: ${IMG_ALIGN:=1}
: ${MODULES=enfuseModules makeHDR tmMantiuk tmFattal makeGIMP}
: ${PREVIEW_MODE=1}
: ${PREVIEW_SIZE=1024}

Now that everything is defined, we mount the memory card on /mnt/media and start
hdrff:

User's Guide

Page 3
Copyright © 2010 Bernhard Bablok All rights reserved.

../modules/noop.html

$ > hdrff

You will see a lot of messages passing by. You can change this by either passing the -q
option to hdrff or by setting VERBOSE=0 in your configuration file.

Starting hdrff without arguments will execute all the modules defined in the
MODULES-configuration variable. In our case, hdrff will do the following:

• Copy files from $MEDIA to $TARGET_DIR/orig.
• Rename files to lowercase.
• Set the filedate to the exifdate.
• Set the files in $TARGET_DIR/orig to read-only.
• Convert the files in $TARGET_DIR/orig to tif-files in $TARGET_DIR/work. A

file named dsc_1234.nef will generate a file named dsc_1234.tif.
• Identify image-sequences. This step will create the file

$TARGET_DIR/work/hdr-list.txt.
• Fix chromatic aberrations. This will generate a files named ca_*.tif, e.g.

ca_1234.tif in $TARGET_DIR/orig. In case you use IMG_FIXCA=0 the
module will only create symlinks instead of files.

• Align images. Lets assume three images dsc_1234.nef-dsc_1236.nef
constitute one sequence and images dsc_1237.nef and dsc_1238.nef are
"single" images. The alignment-module alignImages will create three new files
ais_1234.tif-ais_1236.tif and two symlinks ais_1237.tif and
ais1238.tif symlinked to the respective ca_*-file.

• The module enfuseImages will merge the image sequences. Our example will create
one file enf_1234.tif and two symlinks enf_1237.tif and
enf_1238.tif.

• Next, makeHDR generates a "true" 32-bit HDR-file. The name is hdr_1234.hdr.
• The next two modules tonemap this HDR-file with two different algorithms (Mantiuk

and Fattal). Thesse steps generate the files mantiuk_1234.tif and
fattal_1234.tif.

• Finally, the module makeGIMP creates a file named gimp_1234.xcf. This is a
three-layered file using enf_1234.tif, mantiuk_1234.tif and
fattal_1234.tif.

At this point the workflow is almost finished. You could stick with either the file
generated by enfuse or one of the tonemapped files. You could also start GIMP and
fine-tune gimp_1234.xcf.

Although this simple workflow generates useful files from image-sequences, there are
still some open ends. There are a lot of work-files left over together with the final files in
the working directory. The next chapter will cover additional tasks in the workflow.

5. An advanced Workflow

User's Guide

Page 4
Copyright © 2010 Bernhard Bablok All rights reserved.

../modules/alignImages.html
../modules/enfuseImages.html
../modules/makeHDR.html
../modules/makeGIMP.html
http://enblend.sourceforge.net

The advanced workflow assumes the same configuration as above with only a few
changes:

: ${MEDIA:=/mnt/media}
: ${TARGET_DIR:=/data/images}
: ${IMG_EXT:=nef}
: ${IMG_PREFIX:=dsc_}
: ${IMG_DEPTH:=16}
: ${IMG_FIXCA:=1}
: ${IMG_ALIGN:=1}
: ${phase1Modules=baseModules}
: ${phase2Modules=enfuseModules makeHDR tmMantiuk tmFattal makeGIMP}
: ${phase3Modules=adminModules delMediaFiles}
: ${PREVIEW_MODE=1}
: ${PREVIEW_SIZE=1024}
: ${DEL_FILES=dsc ca ais enf mantiuk fattal}

We start by running the modules of the first phase:

$ > hdrff phase1Modules

Except for the raw-conversion, the steps of this phase aren't very time-consuming. But
now is the time to preview the images in $TARGET_DIR/work and discard (delete) all
images and image-sequences which don't meet our quality standards. Also, we would edit
the file $TARGET_DIR/work/hdr-list.txt to delete all the discarded images.
Maybe we would also have to change the list itself, since the module findGroups uses a
heuristic to find image-sequences, and this heuristic sometimes fails.

After this initial cleanup, which will save a lot of time later on, we run the second phase:

$ > hdrff phase2Modules

At this point, we are at the same point as after the simple workflow above. We could
examine all generated files and discard a few more images and or image-sequences.

Running the modules of the third phase

$ > hdrff phase3Modules

will do the following:

• Delete intermediate files from the work-directory.
• Set the file-date of all generated files to the file-date of the respective original file.
• Move all files (original images and generated files) to the archive directory. The root

of the archive-directory defaults to $TARGET_DIR/archive. The module
mv2archive creates subdirectories below this root. These subdirectories are named in
the format yyyymmdd, and every file will be moved to the date-directory
corresponding to the date the image was taken.

• As a last step, the original files are deleted from the memory card.

User's Guide

Page 5
Copyright © 2010 Bernhard Bablok All rights reserved.

../modules/findGroups.html
../modules/mv2archive.html

It's a good idea to backup your archive-directory now. Paranoid people will only delete
the original files from the memory card after having backed up the archive-directory.

6. A scenario with limited disk space

The full hdrff-workflow creates a lot of large intermediate tif-files. If you are low on disk
space, you can employ one of the following strategies.

Strategy one will delete intermediate files as soon as possible:

$ > hdrff copyFiles name2lc fixDate setRO jpg2tif raw2tif findGroups
fixCA
$ > DEL_FILES="dsc_" hdrff delInterFiles
$ > hdrff alignImages
$ > DEL_FILES="ca_" hdrff delInterFiles
$ > hdrff enfuseImages makeHDR
$ > DEL_FILES="ais_" hdrff delInterFiles
$ > hdrff tmMantiuk tmFattal makeGIMP
$ > DEL_FILES="fattal_ mantiuk_ enf_" delInterFiles
$ > hdrff setOrigDate mv2Archive

This example assumes that you are only interested in the final GIMP-file. You can change
the last delInterFiles-command if you want to keep additional files.

The second strategy processes only a subset of the images at a time and deletes the
intermediate files at the end of each batch of files. The following script fragment will
assumes this configuration:

: ${MEDIA:=/mnt/media}
: ${CP_LIMIT:=36}
: ${TARGET_DIR:=/data/images}
: ${IMG_EXT:=nef}
: ${IMG_PREFIX:=dsc_}
: ${IMG_DEPTH:=16}
: ${IMG_FIXCA:=1}
: ${IMG_ALIGN:=1}
: ${MODULES=enfuseModules makeHDR tmMantiuk tmFattal makeGIMP}
: ${DEL_FILES=dsc ca ais enf mantiuk fattal}

The added configuration variable CP_LIMIT=36 limits each run to a batch of 36 images
(of course you should choose a number small enough for the available disk-space).

while true; do
hdrff
[$? -eq 12] && break
hdrff adminModules delMediaFiles

done

The first module copyFiles only copies a maximum of CP_LIMIT images at a time. If
there are no more images to copy, the module returns with a return-code of 12. The last
module delMediaFiles also respects the value of CP_LIMIT and only deletes the images

User's Guide

Page 6
Copyright © 2010 Bernhard Bablok All rights reserved.

../modules/copyFiles.html
../modules/delMediaFiles.html

already processed.

This approach also works if the first variant still produces too many intermediate files to
fit on disk. But it has one drawback. If a sequence spans two batches, it wont be
recognized correctly. You should examine the images at the end of one batch and the
beginning of the next and if you find an interrupted sequence, you should copy the
respective files back to IMG_DIR, crate the hdr-list.txt-file and start with the modules of
phase 2 as described in the section above.

7. Writing your own modules

You can extend hdrff with your own modules. Hdrff will automatically load the files
$HOME/.hdrff/*.inc. A module foo must implement as a minimum three functions
foo_help(), foo_check() and foo(). In fact, you should also implement the function
foo_single() and foo_multi(). These functions support parallel processing and
image-filtering.

The best way to start your module is to create a template from an existing module:

$ > sed -e "s/noop/foo/g" /usr/local/lib/hdrff/noop.inc >
$HOME/.hdrff/foo.inc

Hdrff will already be happy and will load and execute the module (try hdrff -H or
hdrff foo).

Now you have to edit the header and change the help-text. If your module needs some
special external commands, you should also edit foo_check() and test for the existence.
Have a look at the existing modules if you are unsure how to do it. Finally, you would
implement the the function foo. Again, you could use existing modules as a template.

Usually, foo() only calls one of the functions processListPar (preferred) or
processListSeq. The first will call multiple instances of foo_single() and foo_multi in
parallel, the latter will sequentially process the hdr-list.txt-file.

The core module code goes into the functions foo_single() and/or foo_multi(). If your
module only processes real image sequences, you would only implement the
multi-variant (leaving the single-variant with the empty body of the template). Similarely,
if you only process single images you only need the single-variant (see the module
raw2seq for an example). Sometimes you have to implement both variants.

If you think your module is of general interest, post it in the open discussion forum of
hdrff. I will be happy to add it to the hdrff-distribution with the next release.

8. Using hdrff4img

Since version 1.1, the hdrff-distribution contains an additional script: hdrff4img. The idea
of this script is to provide support for hdr-tasks without the need to set up the whole

User's Guide

Page 7
Copyright © 2010 Bernhard Bablok All rights reserved.

../modules/raw2seq.html
hdrff4img.html

environment needed for hdrff. You would typically use hdrff4img for adhoc
conversions of images. It is especially useful for testing parameters.

Let's start with an example. You have a number of raw-files and want to create a
HDR-file. After that, you want to use various tone-mapping algorithms to process this
HDR-file. You would use the following commands to for these tasks:

$ > hdrff4img -t "hdr" dsc_1234.nef dsc_1235.nef dsc_1236.nef
$ > hdrff4img -t "fattal" hdr_1234.hdr
$ > hdrff4img -t "mantiuk" hdr_1234.hdr

The first command creates the file hdr_1234.hdr in the current working-directory.
After that, the following commands process this file to create fattal_1234.tif and
mantiuk_1234.tif.

As you can see, with hdrff4img you can only do one thing at a time. It will take the
input-files, guess the necessary modules needed for the given task, run these modules,
delete intermediate files and only keep the target-file.

The hdrff4img-script expects you to pass the images as arguments and the target-task
with the -t option. An additional option -D lets you specify the target-directory, which
defaults to the current working directory. Passsing "+" to the -D-option will use the
directory of the first argument image as the target-directory.

The target-task is not a module-name, but a name for a processing-level in the workflow.
E.g. a valid value for target-task is "align. If you pass this target-task to hdrff4img, it
will process the argument files and align them (it will also automatically identify
image-sequences). Other valid values for target-task are enfuse to enfuse the images or
hdr to create HDRs and so on. A list of valid values is available in the man-page or with
hdrff4img -h.

Bear in mind that hdrff4img is not as flexible as hdrff. In order to be simple to use,
it uses a number of heuristics to set hdrff-config-variables. It will also examine the
argument images and guess their current processing-level to minimize the modules
needed to achieve the target processing-level.

You should also pass only one type of file, e.g. either raw, jpg, tif or hdr. If you pass
tif-files, they should have the same processing-level, e.g. all should have already CAs
removed. And all files should have the same image-prefix.

Consider three tif-files that were manually converted from raw. You want to align these
images and create a hdr-file. The necessary commands are:

$ > hdrff4img -t "hdr" img_1234.tif img_1235.tif img_1237.tif

This command will create the file hdr_1234.hdr in the current working directory. To
process this file and create a number of different tone-mapped versions, you could run the
commands as in the first example. If you want to also enfuse the files, you would use the

User's Guide

Page 8
Copyright © 2010 Bernhard Bablok All rights reserved.

target-task "enfuse". This will also realign the images, since all intermediate images were
deleted. So it is more efficient to split up the processing:

$ > hdrff4img -t "align" img_1234.tif img_1235.tif img_1237.tif
$ > hdrff4img -t "hdr" ais_1234.tif ais_1235.tif ais_1237.tif
$ > hdrff4img -t "enfuse" ais_1234.tif ais_1235.tif ais_1237.tif

The first command will align the images and create the files with the ais-prefix which are
then used by the following two commands. As an alternative, you could pass the
-k-option to hdrff4img. With this option the script will keep all intermediate files.

hdrff4img has two options to explicitly group images, thus overriding the automatic
sequence-detection (which sometimes failes). If you use the -g-option, you declare that
all images belong to a single image-sequence. Using the -G-option, you explicitly pass
the image-groups, e.g.

$ > hdrff4img -t "hdr" -G "1-3 4-6 7-11" *.nef

Here you would define three groups, the first two with three images each, the last group
has five members.

If you want to change the default behaviour, you can either pass a standard
hdrff-configuration-file with the -C-option, or set the configuration-variables on the
commandline.

User's Guide

Page 9
Copyright © 2010 Bernhard Bablok All rights reserved.

	1 Introduction
	2 Modules
	3 Module Groups
	4 A simple Single-Phase Workflow
	5 An advanced Workflow
	6 A scenario with limited disk space
	7 Writing your own modules
	8 Using hdrff4img

